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Recently, the effect produced on the optical absorption of a semiconductor by small dc fields (~10% V/cm),
which cause current but do not alter the band structure, was calculated. This calculation is herein extended
to the reflectivity by use of the Kramers-Kronig and Fresnel relations. Reflectivity changes and polarization
effects are found as functions of photon energy (0-0.4 eV) in InSb at 77°K. The effects for fundamental
transitions are large (AR/R~1073), while the effects for intervalence band transitions are small but measur-

able (AR/R~1075). Uses of these effects are discussed.

I. INTRODUCTION

ECENTLY, the effect produced on the optical
absorption of a semiconductor by small dc fields,
which cause current but do not alter the band structure,
was calculated.! Such a current-induced effect on the
absorption implies a current-induced effect on the
reflectivity, since the absorption coefficient « is related
to the reflectivity R through the complex permittivity,
Kramers-Kronig relations, and the Fresnel formula.
Theoretically, the reflectivity effect might be useful,
in a way similar to that suggested and demonstrated??
for the absorption effect, in determining the carrier
distribution function and wave-function parameters.
The reflectivity effect would enjoy an advantage over
the absorption effect for often R is more easily measured
than « in highly absorbing semiconductors. Therefore,
we report here a calculation of the effect of current on
the reflectivity of a semiconductor, and discuss means
of obtaining the distribution function.

As in I, the calculation is performed for InSb, a typi-
cal member of one class of semiconductors. The current
is described by a distribution function whose argument
is the energy of carriers that are displaced in momentum
space. Analysis necessary to the calculation is pre-
sented in Sec. II. Results for the current-induced re-
flectivity spectra over the energy range 0-0.4 eV for a
lattice temperature of 77°K are presented and discussed
in Sec. III.

II. ANALYSIS

Consider light of energy E incident normally on a
linear isotropic homogeneous semiconductor. Electro-
magnetic theory and the principle of causality furnish
relations between the absorption coefficient « and the
complex permittivity e*:
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(2.1a)
(2.1b)

e=¢€1+1ies,

es(E)=henEa(E),
a(E)=1+(2/m)PV [ . Fley(E')(E?—E2)-'E'. (2.1c)

Here, % is Planck’s constant divided by 2, ¢ is the speed
of light i vacuo, n is the index of refraction of the semi-
conductor, and PV indicates that the principal value of
the integral is taken. The last expression is invertible,
and is known as a Kramers-Kronig relation.

By Fresnel’s formula, the reflectivity R is given in
terms of e by

R=[B—(2B)"*—(a—1)1/
[B+(2B)"*—(a—1)1,
B=e+|e€].

Placing the semiconductor in a small dc field &
changes a by Ac, e by Aes, ¢ by Ae;, and R by AR.
The fractional change in reflectivity is given by®

AR/R=a(ep)Aer+b(ep)Aes,

(2.2a)
(2.2b)

(2.3a)

where €= e;o-F7ey is the zero-field permittivity,5* and

a=Ci[ (e0— 144+ e0d ], (2.3b)
b=Cy[ (e10—1)/A1—e0/4_], (2.3¢)

with
Ay==£[2(] e £ er0)/| eo] ]2, (2.3d)
Cr=[(ew—1)*+ e ], (2.3¢)
Cr=2e1C1] o] 2. (2.3)

In case e is negligibly small compared to ey, an
application of L’Hospital’s rule shows that

a=2[ (exo—1)/e10]?, (2.3g)
b= (3a)(e20/€10)[e10(1 —V2)—1](e10— 1)1, (2.3h)

8 B. O. Seraphin and N. Bottka, Phys. Rev. 145, 628 (1966).
52 Values for eio were obtained from H. R. Philipp and H.
Ehrenreich, Phys. Rev. 129, 1550 (1963).
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From I, « is given by
o E(k),8,T]

o fe\? k?
5 P> ®
X/ sinfdfde|{pu(k)|a-p| oi(k))|2

X{ULE(|k+d])]— fLE(|k+d])]},

where T is the absolute temperature of the lattice, e
and m are the charge and rest mass of an electron,
respectively, and a carrier is described by momentum
p, wave vector k, effective mass m*, and mobility u.
The incident light is polarized in direction a, and cgs
units are used throughout. Expression (2.4) holds for
direct transitions of wavevector k between two states

—1

d
— ’uk— lk
dkEE() E(k)]

(2.4)
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of energies E, (k) and E;(k) (E,>E,) and corresponding
wave functions ¢,(k) and ¢:(k), with distribution
functions f(E,) and f(E;). The incident energy E is
constrained to be a function of £(=|k|) by the con-
servation of energy:

Ey(k)—Ei(k)=L(k). (2.5)
The field enters the calculation through the displace-
ment wave vector d given by

hd=m*u g, (2.6)

so that for & in the z direction and % given by spherical
coordinates (,6,¢), the distribution function depends on
polar angle 6:

| k4d|2= k24 d2—2kd cosf. (2.7

Alternatively, € can be directly obtained from first
principles.®” The result is

a(E)= 1+81rh2< )
m

u,l k

where E,;=FE,—E;. Expression (2.8) is equivalent to
Eq. (2.1¢).

The distribution function in Eq. (2.4) is, in general,
given by

fE)={1+exp[(Ei—Ep)/ksT ]}, (2.9)

which explains the dependence of a on 7. Here, %3 is
Boltzmann’s constant and E is the Fermi level which
depends on 7, the concentration of carriers of both
signs, and the energy-band structure of the semicon-
ductor. Equation (2.9) is required for degenerate semi-
conductors (| E;—Er|~ksT), but it may be approxi-
mated by the Boltzmann form of distribution function
for nondegenerate semiconductors (|E;—Er|>ksT):

f(E)~exp[— (Ei—Er)/ksT]. (2.10)

For the semiconductor under study (InSb), Ep is
close to the conduction-band minimum. Thus, discus-
sion of fundamental transitions (pairing each of the
three valence bands with the conduction band) demands
use of Eq. (2.9), whereas discussion of intervalence
band transitions (pairing each of the three valence bands
among themselves) permits use of Eq. (2.10).

The problem of determining Zr remains. In the
degenerate calculation, Er is found from?

2exp(n)=—(/—C)
+L(f=Cy+ (41/B) exp(Ea/ksT) ],

n=(Er—Eg¢r)/ksT (2.11b)

8 A. H. Wilson, The Theory of Metals (Cambridge University
Press, London, 1936), p. 126 ff.

7K. S. Viswanathan and J. Callaway, Phys. Rev. 143, 564
(1966).

8J. S. Blakemore, Semiconductor Statistics (Pergamon Press,
Inc., New York, 1962), p. 120 ff. Equation (2.11) is the same as
Eq. (321.18) in this reference.

(2.11a)
where

(2.8)
Eu(k)[E.*(k) szj

is the reduced energy difference between Zp and the
conduction-band minimum Egr (see I), f=N,/Ngis the
ratio of the effective density of states in the conduction
band to donor impurity atoms, £, is the ionization
energy of donor-contributed electrons,® and 8 is the
impurity-level spin degeneracy (in the case of simple
monovalent donors used here, 8=1). The constant
C=~0.27 is discussed in Appendix C of Ref. 8.
For the nondegenerate case, £ is found from®

exp(Er/ksT) = (3py) Qo l?/my*ksT)*?,  (2.12a)

where p, is the density of holes, whose effective mass is
given by
mp*3/2= WLI3/2+m23/2.

(2.12b)

The heavy-mass valence band has effective mass m;
and the light-mass valence band m,. The resulting dis-
tribution function to be used in Eq. (2.4) is then

f(E)=1—47%%, exp(Ev/kBT)/
[ (2rksT)*2 (md 2 msd12)].

III. CURRENT-INDUCED REFLECTIVITY EFFECTS

(2.13)

In performing the calculations, we use the energy
bands and wave functions given by Kane!! and used in
I. The interval of integration used in evaluating Ae;
by Eq. (2.1¢) is truncated where calculations show Ae;
to be insignificant.!? For the sake of clarity, the current-
induced reflectivity effects are presented for the two
cases of direct fundamental transitions and direct

9 C. Hilsum and A. C. Rose-Innes, Semiconducting I1I-V Com-
pounds (Pergamon Press, Inc., New York, 1961), p. 72.

0 A, H. Wilson, The Theory of Metals (Cambridge University
Press, London, 1958), p. 231.

1 E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
2B, O. Seraphin and N. Bottka, Phys. Rev. 139, A560 (1965).



1 CURRENT-INDUCED REFLECTIVITY EFFECTS. -

intervalence band transitions separately, although this
separation cannot be made experimentally for photon
energies for which both processes occur. Note also that
in practice the electron temperature may be different
from the lattice temperature due to the heating effect
of the field. A means of accounting for this was discussed
in Sec. V of I.

The matrix elements in Eq. (2.4) depend on the
angle between a and &. Thus, spectra of both absorption
and reflectivity effects exhibit a polarization depend-
ence. Three cases are studied here: (AR/R) for al| &,
(AR/R), for al &, and (AR/R)yc1, which is the dif-
ference in these two changes. These changes are calcu-
lated by first finding the differences

Aa“=a[E(k),3,T]—a[E(k),0,T], a” & (3-13-)
Aay=a[E(k),8,T]—a[E),0,T], al & (3.1b)
Aapor=Aan—Aay, (3.1¢)

from Eq. (2.4), using the energies and wave functions
mentioned above and the distribution functions dis-
cussed in Sec. II, and then applying Egs. (2.1b),
(2.1¢), and (2.3). The results are shown in Figs. 1 and 2
for fundamental transitions and Figs. 3 and 4 for
intervalence band transitions.

The reflectivity effects calculated here are comparable
in magnitude to other electroreflectance effects pre-
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F16. 1. Calculated current-induced fractional change in reflec-
tivity versus photon energy for fundamental transitions in
n-InSb, showing the dependence on polarization of incident light
a and imposed dc field &. Transitions between the split-off valence
band and the conduction band are neglected. Er=0.175 eV,
N;=10 cm™3.

13 For an extensive list of references to both calculations and
experiments, see D. E. Aspnes, P. Handler, and D, Blossey, Phys.
Rev. 166, 921 (1968).

3349
5
i ———€= 100 V/em
g —— €= 150 V/em
@3 T=77"°K
R
g2
<
o

b

0.22 026 030
PHOTON ENERGY (eV)

F1c. 2. Calculated current-induced fractional change in re-
flectivity polarization effect (light polarized parallel to field case
less light polarized normal to field case) versus photon energy for
fundamental transitions in #-InSb. Transitions between the split-
off valence band and the conduction band are neglected. Er=0.175
eV, N;=10' cm™3.

viously measured.’® Note that the effect for fundamental
transitions at 77°K is fairly large. The calculation shows
the magnitude of Ax in this case to be 10-100 times
larger than for the similar calculation at 300°K per-
formed in I. This behavior is readily understood from
Eq. (2.9). The change in the number of carriers of
energy £ caused by the field is much greater for low
temperatures than for high temperatures (£r is about
the same for both temperatures).

The field dependence of Aa was found in I to be &
for transitions between parabolic bands. It follows from
the linearity of Egs. (2.1b), (2.1¢), (2.2), and (2.3) that
AR/R also varies as & with the field.

The sign of (AR/R),01 follows from the sign of
Aoipor, which was discussed in I. As pointed out there,
this property depends on the symmetry properties of
the wave functions. Experimental determination of
(AR/R)po1 for a particular transition, thus, serves to
check the theoretical values for the coefficients of the
orbitals used in each wave function.

The polarization effect may be used to determine the
distribution function as a function of %, assuming the
wave functions to be used in the calculations are known.
To do this, the difference of the distribution functions
is expanded in a power series in u=cosf;

S d )] = B[R+ )]
= 3 [0~ H(B)Jos”

el

= Z Hlum(k)ﬂm .

m=0

(3.2)
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F1c. 3. Calculated current-induced fractional change in reflec-
tivity versus photon energy for intervalence band transitions
between the heavy-mass and light-mass valence bands in p-InSb,
showing the dependence on polarization of incident light a and
imposed dc field &. pp=4X10" cm™3, u, =8 X10% cm? V-1 sec™™.

This expression defines the expansion coefficients H,n,
Hym, and H . which can be determined to second order
(m=2) from the optical properties.? The second-order
terms may be found by first relating (AR/R)yo1 to
(Aes)po1 by a dispersion formula,'*! i.e., the inversion
of Egs. (2.32) and (2.1c). This is

b /AR @ 2F
@apamr=——(=) @
a*+b0*\ R pol a*+b* 7

= /AR
X / (?) (E')(E2—E2)-'E . (3.3)

Then, using Egs. (2.1b) and (3.2) and the wave func-
tions and notations of I, we obtain

8
(Aex)por[ E(k) ]= Ee"‘P ? Zl [Guri (k) —Gur*(k) ]

k2 —1

Hlu?(k) )

d
—[E.(k)—E(k

X 50 dk[ (k)—Eu(k) ]
provided the series (3.2) is truncated at m=2. Equating
Egs. (3.3) and (3.4) yields an equation for the Hy,. in
terms of (AR/R)yo1. If the changes in the reflectivity
in certain regions of the spectrum can be attributed to a
specific transition(s), a linear system of equations may
be obtained. For each equation in the system, Eq. (3.3)

(3.4)

1Y, Hamakawa, P. Handler, and F. A. Germano, Phys. Rev.
167, 709 (1968).
1 F, C. Jahoda, Phys. Rev. 107, 1261 (1957).
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F16. 4. Calculated current-induced fractional change in reflec-
tivity polarization effect (light polarized parallel to field case
less light polarized normal to field case) versus photon energy for
intervalence band transitions between the heavy-mass and light-
mass valence bands in p-InSb. pp,=4X10% cm™3, u,=8X10% cm?
V~1sec™

is equated to Eq. (3.4) separately, with the integral in
Eq. (3.3) taken only over that energy range where the
reflectivity change is attributed to the transition(s)
appearing in Eq. (3.4). The system of equations may
then be solved for the individual Hy,s.

It may be possible to go further and obtain H;, and
H,, separately in either of two ways. The doping and
temperature of the semiconductor can be chosen in
such a way that the conductivity is due primarily to
one band. Then the expansion coefficients for the other
band(s) may be set equal to zero. Alternatively, a
sufficient number of linear equations may be obtained
to uniquely determine H; and H,.

Should the above analysis prove intractable for the
semiconductor under study, a curve fitting procedure
might be used to obtain information about the dis-
tribution function; e.g., the distribution functions in the
theory of Sec. II could be expanded and the expansion
coefficients adjusted until the theoretical curve fits the
experimental curve.

Finally, it should be noted that, although the effects
discussed herein are distinct from the electroreflectance
effect caused by changes in the band structure (Franz-
Keldysh effect in the reflectivity, i.e., Seraphin Effect),
the results given above may be useful in interpreting
small discrepancies between experiment and the theory
of the latter effect if any currents are permitted during
the experiments.



